Q>
The Pros and Cons of
\oble Apo Cross
Platfiorm Development

By Yuri Brigance

Digital Experience & Mobile

aimH™

consulting

In a world with two dominating mobile operating systems there is frequently an
expectation to develop two versions of the same app. Very rarely do businesses
chose to only develop for iOS, or only for Android. If they do, the app usually targets
some rare and specific feature of one platform that the other lacks.

Naturally, product owners are looking to reduce cost and
development time. One way to do this is by looking for ways to
share as much of the codebase as possible between the two
platforms. There are many cross-platform development tools that
claim to solve this issue. Are they worth using? Do they actually
save time and effort? What are their limitations and advantages
over native development?

Native App Development

Before we look at several cross-platform tools, let’s briefly talk about the benefits of
native application development. Mobile applications for iOS are written in Objective-
C, and more recently in Swift; while Android apps use Java or Kotlin. Maintaining
two separate native codebases can seem costly for a number of reasons;

m Two separate codebases using different and incompatible languages
m The same features implemented twice, but not necessarily in the same way

m Different build tools, IDEs, CI/CD pipelines, Ul builders, separate tests, etc.

But there are definite advantages, too:

Fast code execution, smooth Ul, familiar experience for app users
Easier to comply with each platform’s unigue Ul design guidelines
Complete control over all platform features, hardware, networking, etc.
Use feature-rich native platform-specific development tools

Easier to hire expert developers versed in a specific platform & language(s)

Fewer unknowns so that developers don’t have to learn new technologies

© 2017 AIM Consulting | aimconsulting.com Pros & Cons of Mobile App Cross Platform Development | PAGE 2 of 13

http://aimconsulting.com/

daim

consulting

Developers generally chose to specialize in a specific field, and their performance is
reduced when they are tasked to write code using a language or platform that they
are not familiar with. Native app development is the path of least resistance for
finding a skilled workforce that can hit the ground running with little to no ramp-up
time. Primarily because developers will write code in a language they love, for a
platform with which they have significant experience, using tools they already know.

When most non-developers hear the words “cross-platform” they instinctively think it
means “write code once, run anywhere”. Indeed, that would be the holy grail of
development - but then why would separate platforms exist? If both platforms had
the same features, there would be no difference between them; it would be the
same platform.

The reality of cross-platform development is somewhat murkier. There are definitely
some shared features between iOS and Android, and it would be nice to be able to
only write code once to utilize them. But there are also major differences that are
platform-specific--too many to list. Take Android’s hardware and soft buttons (like
the “back” button) and compare them to Apple’s “home button” (or lack thereof in
iPhone X) and you can see that the way users interact with each OS is not the same.

The advantages look great on paper:

Save time and money by writing the code just once for both platforms
Only maintain one codebase

Consistent look and feel across both platforms

But look under the hood and you will discover some serious potential pitfalls:

Developers have to re-learn tools, programming language, and abstractions
(like networking, camera, etc.).

Apps may not adhere to platform-specific UI/UX best practices. At best this
will feel unnatural to users, at worst it risks rejection at submission time.

Internal branching logic to deal with platform-specific things like networking,
hardware, Ul, storage (and more) will still be necessary.

It will be more difficult to find developers experienced in a particular cross-
platform tool who are also experts in both Android and iOS.

© 2017 AIM Consulting | Pros & Cons of Mobile App Cross Platform Development | PAGE 3 of 13

http://aimconsulting.com/

daim

consulting

Developers spend years acclimating to the development tools of their choice,
learning and keeping up with updates on specific platforms and understanding the
intricacies of their chosen programming languages. It cannot be stressed enough
that switching software development platforms is an extremely costly and time
consuming task. There is a high setup cost--one that can be irreversible once any
significant work has been done.

Additionally, many developers may not be happy with the change. They will have to
learn a third-party tool that dilutes the power of their preferred platform and forces
them to write code in an unfamiliar programming language. It can restrict their ability
to effectively develop, test, and debug the code. This can lead to retention problems
as developers may perceive becoming an expert in a potential “vaporware” tool that
may or may not exist in a few years as a career-limiting choice.

Luckily, cross-platform development tools are exactly that—tools. In theory, a
hammer can be used to drive a screw into piece of wood, but a screwdriver is a
much better choice for that task, and a powered one is even better when you have a
lot of screws. When applied correctly, cross-platform tools can produce real
benefits. Depending on your goals, there are two main approaches to cross-
platform development: hybrid and full cross-platform.

The hybrid approach can be a great middle ground between Native and Cross
Platform development. With a hybrid approach, some components are shared
between apps, but the apps themselves can be developed using native tools and
languages.

One way this is frequently accomplished is with “webviews” - an embedded web
browser that runs JavaScript to render the Ul and communicates to native code via
a JavaScript bridge. Another is using JavaScript Core to directly perform simple
logic and calculations identically on both platforms. Usually these are custom written
components partially backed by native code, since developers must provide a
webview container and JS bridge to make the component render and be able to
communicate with the rest of the app. This is not as time-consuming as it sounds
since both platforms pretty much support this out of the box. A really nice side-
effect of this approach is that you can write your Ul or other logic components using
JavaScript and use the same code on your website and in your mobile apps. Good
candidates for this approach are custom Ul elements like pie charts and graphs, as
well as simple calculations like stream processing, sliding window averages, and
counters.

When more serious performance is desired, however, webviews and JavaScript
aren’t the right tools to use. You wouldn’t want to implement machine learning

© 2017 AIM Consulting | Pros & Cons of Mobile App Cross Platform Development | PAGE 4 of 13

http://aimconsulting.com/

aim™

consulting

algorithms or image processing using an interpreted language. In this case you can
also write portable C/C++ code that will compile and run on both iOS and Android
platforms. You can even use Swift on both (we've covered that in a separate article).
But there is still the issue of creating language bindings - your Java/Kotlin code
needs to be able to exchange data with the C/C++ or Swift code. It is, admittedly, a
bit easier on iOS since Objective-C is a superset of C++, and Swift is also a native
language which has bindings into the C world.

Lastly, there are cross-platform tools which can be plugged into existing native code
to provide components which utilize native Ul elements. One of the most popular
tools for this is React Native, created by Facebook. While it is true that you can write
your entire app using React Native, they also provide a neat guide on how to
integrate React Native into an existing application and reap the benefits of cross-
platform code. We’ll look into this tool, and others in the section below.

Cross-Platform Tools

Cross-platform tools like Xamarin, React Native, lonic, and
PhoneGap/Cordova claim they can completely replace the
Android Studio and Xcode development environments. Most of
them promise a “write once, run anywhere” approach, provide
their own IDEs, and use their own programming language. Let’s
take a brief look at each one.

Xamarin

Xamarin, acquired by Microsoft, uses C# as the programming language and is
probably the closest you will get to writing native code. It can be used in several
different ways, with the goal of preserving as much native functionality as possible
and just switching the language to C#.

You can continue using native tools to lay out the Ul components - Interface Builder
and XIBs/Storyboards on iOS, and XML layout files in Android Studio. Alternatively,
you can go full cross-platform and use Xamarin Forms and XAML to write your
layouts. A custom layout preview tool is available. However, your actual application
code is written in Visual Studio, a non-native IDE.

Xamarin uses native components to render the Ul and is compiled to byte-code so
there is no runtime interpretation like with JavaScript and webviews.

© 2017 AIM Consulting | aimconsulting.com Pros & Cons of Mobile App Cross Platform Development | PAGE 5 of 13

http://aimconsulting.com/
https://aimconsulting.com/insights/blog/modular-programming-android-using-swift/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://www.xamarin.com/
https://facebook.github.io/react-native/
https://ionicframework.com/
https://phonegap.com/
https://www.xamarin.com/
https://www.xamarin.com/forms

daim

consulting

Xamarin advantages include:

Easy access to native code and native features.

AOT (Ahead-Of-Time) compilation provides native-level performance.

Use native Ul or Forms as needed; both are rendered using native widgets.
Easy to find C# developers. C# syntax is also similar to Java and C/C++.
Compiled code, suitable for CPU and graphics intensive tasks.

A lot internal app code can be shared (model objects, Ul, etc.).

The disadvantages are:

Using C# programming language to bind to native code.

Some native method names are changed, requiring re-learning.

Have to use Visual Studio instead of a dedicated native IDE.

Still have to write separate code for Android/iOS, only just now with C#.

Still have to deal with things like networking stacks and hardware separately.

Limited binding to Swift programming language. Requirement to inherit from
NSObject and use @objc annotation hinders ability to use pure-Swift third-
party frameworks.

Despite the name “Xamarin” sounding vaguely similar to an anti-depressant
medication, it won’t necessarily cure all your headaches. If your app relies heavily on
platform-specific features you will end up writing a lot of “if-else” statements for
Android and iOS, but now you’ll be using C#. Your developers may not be happy
about having to use Visual Studio as their IDE if they have not been using it until
now. The setup and learning curve is still fairly high because your C# devs also must
have specific Android and iOS platform knowledge.

Xamarin may be good for fairly straight-forward apps that may do some CPU-
intensive tasks, like an image filtering app or a video game. But it may not be the
best tool to build a companion app for your next Bluetooth & Wi-Fi enabled fitness
tracker. In either case, Xamarin is best used when you have a team of native C#
developers that are looking to create apps for Android and iOS and are already
familiar with Windows Studio and related tools.

© 2017 AIM Consulting | Pros & Cons of Mobile App Cross Platform Development | PAGE 6 of 13

http://aimconsulting.com/

daim

consulting

React Native

Like Xamarin, React Native was created with the goal of replacing both Android
Studio and Xcode entirely. Created and used by Facebook, it is very quickly gaining
popularity. Aside from being backed by “Big Tech”, the barrier to entry for using it is
fairly low. In fact, React Native may be one of the only cross-platform frameworks
that can be used to create shared components within native code, or replace the
native code entirely.

With React Native, developers will have to learn JavaScript and React. React
advocates a “Ul is a function of app state” approach. As your app state changes, it
updates only the necessary elements. As with Xamarin, the templated Ul is rendered
using native components.

In terms of performance, what makes React Native different from Xamarin is its
reliance on JavaScript, which is an interpreted language. While Xamarin compiles
down to bytecode, React Native uses JavaScriptCore, which is present on both
Android and iOS. Android’s JS Core supports JIT (Just-In-Time compilation) which
speeds up JavaScript execution by compiling code at runtime after interpreting and
executing it. But this is not supported by JavaScriptCore in iOS. Additionally, 64-bit
execution mode is currently NOT supported on Android. The state of 64-bit support
on iOS is unknown.

In terms of development tools, React Native allows you to either continue using
native tools (when integrated into a native app), or use any text editor (like Sublime
Text) and “Hot Reloading” to author your code and see the results in real-time. This
is a nice feature, as you don’t have to recompile and reinstall the app each time to
see the changes.

Advantages:

Can be integrated with native code, or used completely cross-platform.

Hot Reloading provides instant feedback without recompiling and
reinstalling.

Uses fast native widgets to render Ul, but not all widgets on each platform
are available.

Disadvantages:
Interpreted at runtime, hurting performance of CPU intensive tasks.
Not entirely native look and feel.
Difficult to reach into native code when going fully cross-platform.

High learning curve; complicated environment setup steps.

© 2017 AIM Consulting | Pros & Cons of Mobile App Cross Platform Development | PAGE 7 of 13

http://aimconsulting.com/
https://facebook.github.io/react-native/
https://github.com/facebook/react-native/issues/2814

daim

consulting

No language bindings; must write an adapter to communicate with native
code.

No support for background code execution on iOS and limited support on
Android (no services).

Increased application bundle size due to a number of JavaScript
dependencies.
By far the biggest advantage of React Native is the ability to provide shared Ul
widgets between both platforms by integrating into the native code. While React
Native can provide full cross-platform functionality, the fact that it's interpreted at
runtime and lacks 64-bit support makes it a poor candidate for apps that are more
complicated than something like a storefront or a banking application.

Once you go full React Native cross-platform, it becomes very cumbersome to tap
into the native code. With no real language bindings, developers must write “pluginsg”
to access native features. This can completely negate the “single codebase”
advantage since now the team is maintaining JavaScript, Objective-C/Swift, and
Java/Kotlin codebases all at the same time. The learing curve can be costly since
React is unfamiliar to most mobile developers and JavaScript is a weakly-typed
language which will irk those used to a compiled strongly-typed programming
environment. You really can’t use pure web developers here either, since large
platform knowledge is required for more advanced functionality. Additionally, with
over a thousand JS dependencies, React Native is fragile, with official
documentation struggling to keep up. As a result your team may spend additional
time searching StackOverflow for answers about obscurely worded errors that
seemingly came out of nowhere.

React Native abstracts some common functionality like networking and camera
access, but here you run into an issue of reducing both platforms to their “least
common denominator” and still end up with a lot of “if-else” code to truly take
advantage of each platform’s features. As platforms get updated and new
frameworks are added, React Native’s development team must write code to catch
up. This means that you are almost always working with a partially outdated feature
set.

When it comes to React Native, it seems best to use it as a cross-platform Ul
builder. Start small by integrating simple components and work your way up to
applying it to more complicated challenges - so long as the cost of doing so doesn’t
outweigh the cost of just writing the same functionality natively. Another big
advantage of React Native is, rather obviously, if you have a team of React web
developers wishing to provide native mobile development services.

© 2017 AIM Consulting | Pros & Cons of Mobile App Cross Platform Development | PAGE 8 of 13

http://aimconsulting.com/

daim

consulting

lonic & PhoneGap

Both lonic and PhoneGap use webviews to render components that look native, but
are not actually true native widgets. There is not a lot to be said about using them to
build applications. They are truly only (partially) suitable for situations where you need
to render data with very little processing and storage - similar to a web application.
These are all-or-nothing frameworks, so you can’t augment existing native
applications with shared components. All of your application code will have to be
written using these frameworks.

lonic does provide a Ul editor, while PhoneGap seems to have a more limited GU!
desktop application available. Interaction with native code is done via plugins and
adapters, similar to React Native. This type of development is really the hybrid
webview and JavaScript bridge approach, but taken too far and pumped with
steroids. For anything more complex than a data viewer you will likely have to use a
large number of plugins, or write your own, thus maintaining separate codebases in
a variety of different languages. If you have ever used a really bad non-native looking
banking application, it was likely written with either PhoneGap or lonic.

Advantages:

Common Ul across platforms

Live preview of changes

Disadvantages:

Fully interpreted HTML running inside of a webview means slower
performance

Ul may look native, but will feel strange and animate with choppiness
No native code bindings

JavaScript or TypeScript unfamiliar to most mobile developers
Potentially maintain multiple codebases in different languages

No background code execution

Only partial, always outdated platform feature set available

Does not use native development tools familiar to most developers

© 2017 AIM Consulting | Pros & Cons of Mobile App Cross Platform Development | PAGE 9 of 13

http://aimconsulting.com/
https://ionicframework.com/getting-started
https://phonegap.com/getstarted/

daim

It is difficult to argue in favor of these webview-dependent frameworks, as it is very
difficult to develop an application that feels truly native using them. There are a few
good examples out there, but one has to wonder how easy it was to convince and
keep developers willing to write mobile applications this way. Other questions spring
to mind, such as how does this work with CI/CD environments, automated testing,

and more.

The table below shows the comparison between the various cross-platform options

consulting

out there.
Xamarin React Native lonic & PhoneGap
Language C# JavaScript TypeScript
Core Philosophy Maximum View reacts to Uses web

compatibility with
native code. Replace
the language with C#

application state;
familiar to React
developers

technologies for
maximum portability
across platforms

Performance

Good, on par with

Native Ul, but rest is

Relatively poor

compiled mostly interpreted & performance, HTML
no 64-bit support Ul, fully interpreted
Can Be Used In No Yes No
Native App Code
Uses Native Ul Yes directly, or via Yes, under the hood No

Without Recompilation

recompilation like a
traditional app

Widgets Forms

Native Look And Feel | Yes No Kind of looks native,
but does not act
native (HTML)

Instant Updates No, requires Yes Yes, can also run in a

web browser

Native Code Bindings

Yes, but not for pure
non-@objc Swift

No, requires adapters

No, requires adapters

Background Code Yes No No
Execution
Platform Feature Set Full Partial Partial

© 2017 AIM Consulting |

Pros & Cons of Mobile App Cross Platform Development | PAGE 10 of 13

http://aimconsulting.com/

daim

consulting

So what is our recommendation?

If your goal is to develop a flagship application which must be released by a certain
deadline on a tight budget, but your team consists of only native mobile developers,
then your best chance of reaching your goal is to opt for native development. This
will avoid very costly ramp-up time associated with forcing developers to learn new
platforms, programming language, and toolset. Pressuring developers to re-leamn
their platform of choice using different non-native tools and programming language
will likely result in low morale, loss of quality, talent retention problems, lost time, and
increased spending. But that does not mean that cross platform tools do not have
legitimate applications that can provide significant benefits to some teams.

Xamarin may be effective if you have access to a number of C# developers who are
interested in doing mobile development for iIOS and Android--languages & tools
already familiar to them. This is likely to result in fast, native code that does not have
the usual limitations of not being able to utilize the platform’s latest features. Just
beware that on iOS you will likely lose the ability to use some purely Swift third party
libraries. This is not a big deal right now, but Apple spent almost a billion dollars
creating Swift so it can replace Objective-C completely on all of its platforms, and
the inability of Xamarin to use pure Swift classes will eventually make it obsolete if
this issue is not resolved.

React Native can be effectively used to create a number of shared Ul components
that plug into native applications, especially if you have access to web developers
who use React. But beware of the learning curve associated with React and
JavaScript if you only have native mobile developers, and keep in mind that web
developers likely do not have the necessary platform knowledge to write complex
mobile plugins. React Native can definitely save time by sharing some of the Ul code
between platforms, but may require initial time investment to ramp everyone up on
the concept. It will not work for a project with a tight deadline unless the team
happens to have a former Facebook React Native developer on it, but it can work in
a team that is light on mobile developers but has significant React web expertise.

Using lonic or PhoneGap for anything beyond a simple user manual type app cannot
be readily recommended. And, as with all cross-platform tools, it is unlikely to save
time or money on a project with a looming deadline, unless your development team
is fully experienced using these frameworks.

There is a lot of value to be gained from using cross-platform tools. But just like any
tools, they have to be applied to the correct problem to be truly useful. It is
important to consider the ramp-up time, existing dev resources and their skills, as
well as the maturity and support behind the cross-platform framework of choice. Our
advice is to be wary of the “write once, run anywhere” line of thinking and take time
to analyze whether or not cross-platform development is a benefit, not an
impediment, for your team.

© 2017 AIM Consulting | Pros & Cons of Mobile App Cross Platform Development | PAGE 11 of 13

http://aimconsulting.com/

aimH™

consulting

About the Author

Yuri Brigance is an award-winning developer with over eight
years of experience within the consulting industry. He is
particularly adept at developing mobile apps for both iOS and
Android, with an additional background in Web Services
development.

© 2017 AIM Consulting | aimconsulting.com Pros & Cons of Mobile App Cross Platform Development | PAGE 12 of 13

http://aimconsulting.com/

aim™

consulting

About AIM Consulting

AIM Consulting, an Addison Group company, is an award winning industry leader in
technology consulting and solutions delivery. We solve critical business challenges for our
clients, helping them delight customers, empower employees and drive innovation forward.
Founded in 2006, we are ranked among the fastest growing private companies and the best
companies to work for with a long track record of success with clients of all shapes, sizes and
industries across the US.

Capability Areas

Ready for a
~ Application Development solution?
~ Data and Analytics
~ Delivery Leadership Contact us for a free
~ Digital Experience and Mobile consultation.
~ Infrastructure, Cloud, and ESM

LET'S GET
STARTED

Learn more at

https://aimconsulting.com/what-we-do/application-development/
https://aimconsulting.com/what-we-do/data-and-analytics/
https://aimconsulting.com/what-we-do/delivery-leadership/
https://aimconsulting.com/what-we-do/digital-experience-and-mobile/
https://aimconsulting.com/what-we-do/infrastructure-cloud-and-esm/
http://aimconsulting.com/
https://aimconsulting.com/contact-us/

